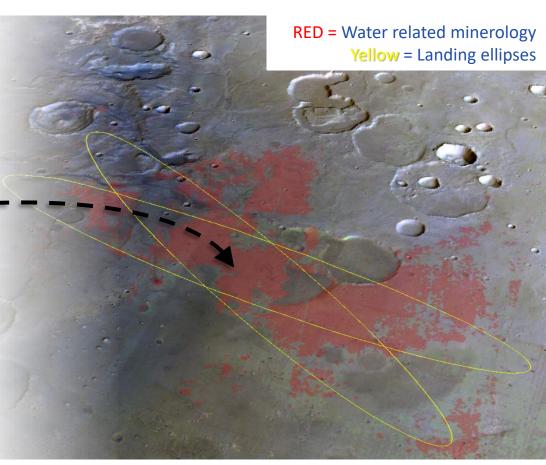
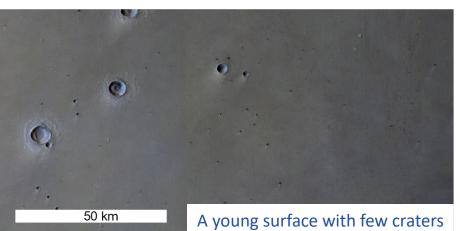
Impact Crater Degradation and the Timing of Resurfacing events in Oxia Planum

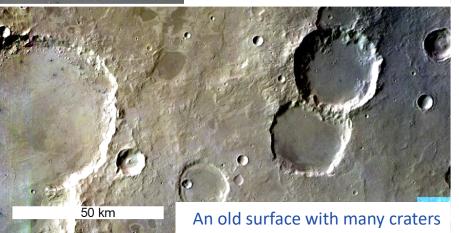

P. Fawdon¹ (<u>Peter.fawdon@open.ac.uk</u>, <u>@DrPFawdon</u>), A. L. Roberts², M. Mirino¹

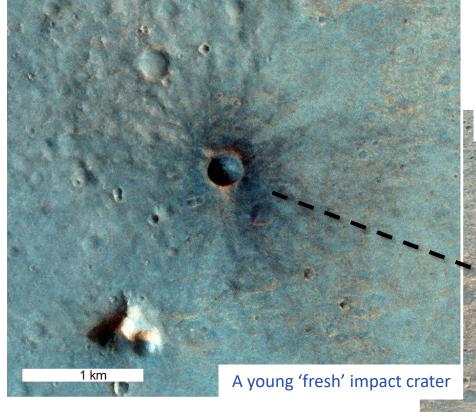
¹School of Physical Sciences, The Open University, Walton hall, Milton Keynes, United Kingdom, MK7 6AA ²School of Earth and Environmental Sciences, University of St. Andrews.

In 2022 the ExoMars rover *Rosalind Franklin* is going to Oxia Planum on Mars

> Oxia Planum was chosen because it formed when condition on mars where most likely to have been able to support life




But how old is Oxia Planum and when did the important events in its geological history occur?

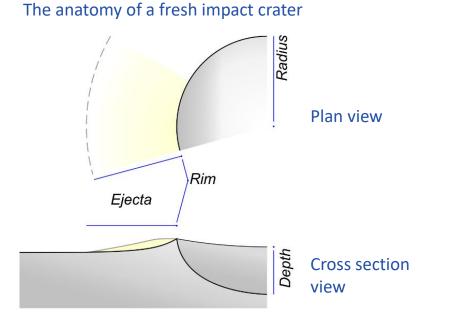

Images Credits: HRSC (DLR, FUB) ESA

How old is the surface?

• To determine how old the surface of a planet is we can look at the number and sizes of impact craters have accumulated there.

 Over time individual impact craters will become eroded by the various processes that happen on the planets surface

1 km

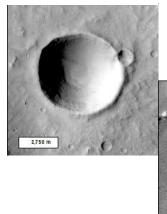

Ope

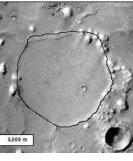
An older eroded and infilled impact crater

Images Credits: HRSC (DLR, FUB) CASSIS (UoB, UA)

Degradation morphologies

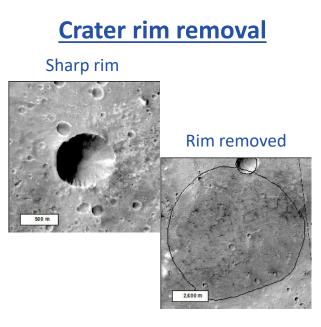
- We created classification scheme to recorded how each a crater has been modified from a 'fresh' shape for four aspects of it morphology
- Examples of craters with the less degraded (top) and more degraded (bottom) morphology in each category



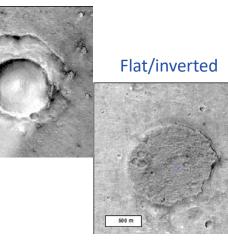

What are the association and Where are the more degraded craters?

Burial of the crater

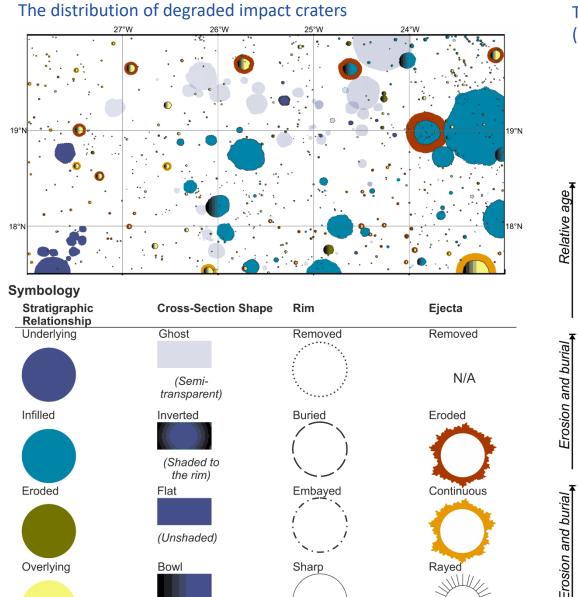
Overlying



Buried


Images Credits: CTX (NASA, ASU)

Crater floor infilling


Bowl

3,500 m

Distribution and likelihood association

(Shaded to the West)

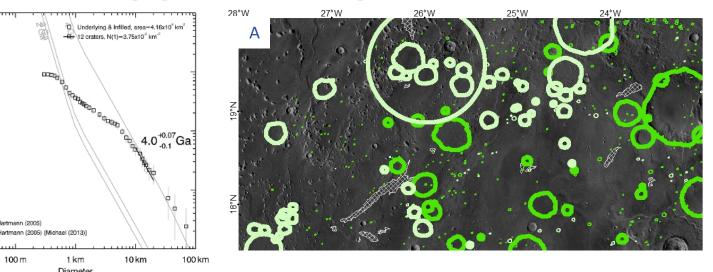
The Likelihood that any two degradation feature occur together (0.0; These features never occur, to 1; they always occur together)

			<i>More degraded</i> Ejecta				Erosion and burial ۲				<i>Erosion and burial</i> Cross section				
	Degradation Featu	re		Rayed	Continuous	Eroded	Removed	Sharp	Embayed	Buried	Removed	Bowl	Flat	Inverted	Ghost
Relative age	2	Relative Stratigraphy	Underlying				0.160	0.005	0.026	0.103	0.519	0.010	0.121	0.025	0.509
	2		Infilled				0.387	0.021	0.248	0.483	0.064	0.251	0.159	0.033	0.072
	1		Eroded		0.017	0.181	0.258	0.429	0.036	0.065		0.375			
			Overlying		0.211	0.189	0.417	0.482				0.331			
Erosion and burial		Cross Section	Ghost				0.152		0.121	0.139	0.429				
			Inverted				0.018		0.010		0.113				
			Flat				0.097	0.032	0.054	0.090	0.132				
			Bowl		0.081	0.164	0.587	0.625	0.111	0.217					
Erosion and burial			Removed				0.139								
	······	r Rim	Buried				0.321			Wh	at ca	an w	ve d	0	
	?	Crater Rim	Embayed			0.010	0.127		with this?						
Ŧ	2		Sharp		0.119	0.236	0.331								

The timing of resurfacing events

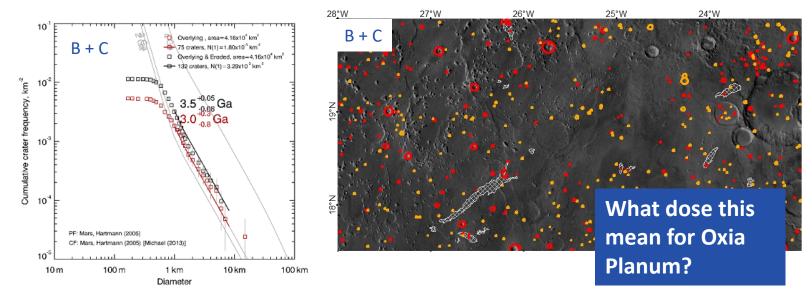
10

10⁻³


10

10 m

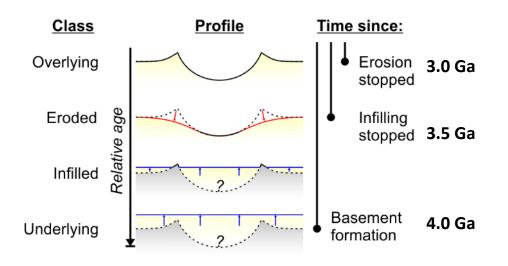
- Burial and rim erosion are the strongest differentiator of impact crater populations.
- 'underlying' and 'infilled' craters show burial was not uniform.
 Where as 'overlying' and 'eroded' craters show erosion was more uniformly distributed
- We can model the time since:
- A '*buried*' and '*infilled*' craters where formed and buried
- B 'eroded' and 'overlying' (fresh) craters formed


C – The time since 'overlying' (fresh) craters where formed (the time since cratered stop becoming 'eroded')

The Oper Jniversit

The populations of 'eroded' (orange) and 'overlying' (red) impact craters

Implications – what does this mean?


- The regional basement, (with the clay mineralogy) is 4.0 Ga old
- Completely buried craters are at lower elevations than infilled craters which suggests topographically controlled (ie; sedimentary) burial process

- Craters have not been infilled since
 3.5 Ga
- A more uniform erosional process dominated eroding craters. Craters with degraded ejecta are bowl shaped meaning heterogeneous sedimentation had stopped

- Since 3.0 Ga erosion has not strong enough to remove the crater rims or ejecta
- Erosional process became less intense meaning <u>regional erosion</u> must have happened during this time

Profiles of the craters used to determine this sequence of events

We thank UK SA for funding P. Fawdon and the Open University space strategic research area for funding A. L. Roberts internship