On the evolution of the primordial hydrosphere of Titan

A. Amsler Moulanier¹, O. Mousis^{1,2}, A. Bouquet^{3,1}, N. H.D. Trinh^{4,1} and K. E. Mandt⁵

¹Aix-Marseille Université, CNRS, CNES, Institut Origines, LAM, Marseille, France ²Institut universitaire de France (IUF) ³Aix-Marseille Université, CNRS, Institut Origines, PIIM, Marseille, France ⁴University of Science and Technology of Hanoi (USTH) ⁵NASA Goddard Space Flight Center, Greenbelt, MD, USA

Abstract

alizee.amsler@lam.fr

cnes

Titan is the only moon of the solar system harboring a thick N_2 -rich atmosphere, as well as a subsurface global ocean covered by an ice crust. To explore the origins and evolution of Titan's present hydrosphere volatile inventory, it is necessary to retrace the influence of the moons' formation scenarios on this inventory. To do so, we need to explore the post-accretion processes that could impact the distribution of volatiles in the hydrosphere. Especially, we investigate the evolution of the early "open-ocean" phase of Titan, which took place shortly after accretion before the ice crust formation.

94.2% N ₂ , 5.65% CH ₄	$CO_2+CH_4+NH_3$
Atmosphere	CH ₄ -clathrate_crust
Ice shell	

- To have sustain Titan's atmosphere with nowadays methane content, the pure methane clathrate crust must be at least ~40m thick.

References:

[1] Niemann, H. B., Atreya, S. K., Bauer, S. J., et al. (2005), Nature [2] Tobie, G., Gautier, D., & Hersant, F. (2012), The Astrophysical Journal

[3] O. Mousis, A. Lakhlifi, S. Picaud, M. Pasek, and E. Chassefiere (2013), Astrobiology

[4] A. Bouquet, O. Mousis, C. R. Glein, G. Danger, and J. H. Waite (2019) The Astrophysical Journal.

 CH_4/CO_2 ratio. The red and blue line show respectively

Fig 1. Partial pressures of CO₂ and NH₃ as a function of the percentage of NH₃ present in the ocean. Each curve corresponds to the amount of CO₂ incorporated in the system, which would have led to the indicated partial pressure without chemistry.

Prospects

- The formation of the clathrate crust is driven by the water ice crust's formation rate.
- Computation of the clathrates' composition, and how their formation affect the atmospheric composition.
- Computation of how noble gas trapping in clathrates could explain their depletion in nowadays' atmosphere.