Translating Open Science ideals to actions for scientists

Xiaoli Chen1, Sebastian Feger2, Robin Dasler and Sünje Dallmeier-Tiessen

CERN
and
1University of Sheffield,
2Universität Stuttgart
CERN

Intergovernmental research organization

22 member states

2200 employees but 10000 users on site

70 countries, 120 different nationalities

A different dimension of collaborative research
Open Science Ideals
Empty rhetoric over data sharing slows science

Governments, funders and scientific communities must move beyond lip-service and commit to data-sharing practices and platforms.

12 June 2017
New territory
New requirements
New opportunities
New challenges
User-centered design

User study

Service design
User-centered design in science \((d)\)

- “flipping the perspective from a technical to a human-centered approach changes the perceived benefits and design goals” \((a)\)

- Even small interface changes of analysis systems impact scientist’s behaviors \((b)\)

Approach: interview based, with a representative set of researchers, junior to senior, different experiments
Drivers: Open Science in HEP
Findings - array of responsibilities

A physicist can simultaneously be a researcher, a collaborator and an academic.

- Theory
 - Hardware
 - Software
 - Analysis
- Detector operation
 - Management
 - Writing and reviewing
- Mentoring
 - Teaching
 - Fund raising

HEP research is demanding, priorities are highly selective.

Information services operate within and among each block of work.
Findings - data and software

1. Provision of additional documentation for the published results
2. Simplified data formats for analysis in outreach and training exercises
3. Reconstructed data and simulations as well as the analysis level software to allow a full scientific analysis
4. Basic raw level data (if not yet covered as level 3 data) and their associated software which allows access to the full potential of the experimental data

In terms of information service for data and software, different type of digital objects need to be accommodated separately
Findings - perception on sharing and documenting

- Those required to share: ensure intelligibility, on distributed platforms, depend on human network for discoverability

- Sharing and documenting decision based primarily on perceived relevance, quality, reuse value, potential impact

- Unclear sense of ownership of research object

Certain levels of openness serves certain degrees of reproducibility and reusability
Discussions

How far away are the physicists from science in the open?

For scientists, open practices are documenting and sharing, and the purpose is reproducibility and reuse.

How to make sharing and documenting “a good deal” for the scientists?

Mainly for the experimentalists, to whom the traditional metrics and incentives barely means anything

Harmonizing the Open Science goal for scholarly communication and researchers community
Translating Open Science ideals to actions for scientists

... the actions
How can we build a service to foster reproducible research? Is that possible?
Preserving a physics analysis

Welcome to the CERN Analysis Preservation Portal.

Our mission is to preserve the analyses across all CERN experiments for years to come...

Log in with your CERN account
Minimize the burden

- Meet the “normal research flow”: submission, updating through terminal/shell
- Submission form designed to support documentation
 - Tailored to collaborations
 - Autosuggest and autocomplete
Preserving a physics analysis - More than just knowledge documentation

● Provide documenting scientists with **tangible** benefits
 ○ Benefits that affect day-to-day analysis work, e.g. findability
 ○ Reproducibility is a high-level, long-term goal that does not always play well as a motivating argument at the moment - visualize possible impact

● Opportunity to foster **collaboration** (based on increased visibility)
 ○ Who does what, who uses what
 ○ Who can help with...

● Structured submission forms act as templates
 ○ Comprehensive documentation made easy - spot missing pieces
 ○ Discover issues / conflicts in the analysis workflow early

Set of incentives that encourage documentation and sharing of **ongoing analyses**
Opening up

http://opendata.cern.ch/
Open sourcing the secrets of the universe: A huge amount of Large Hadron Collider data is now online

By Sarah Kaplan April 26

Cern makes 300TB of data available to download

By EMILY REYNOLDS 25 Apr 2016

Teilchenbeschleuniger LHC: 300 Terabyte Forschungsdaten freigegeben

heise online 26.04.2016 11:34 Uhr - Martin Holland
Jet Substructure Studies with CMS Open Data

Aashish Tripathee, Wei Xue, Andrew Larkoski, Simone Marzani, Jesse Thaler

(Submitted on 19 Apr 2017 (v1), last revised 8 May 2017 (this version, v2))

We use public data from the CMS experiment to study the 2-prong substructure of jets. The CMS Open Data is based on 31.8 pb of 7 TeV proton-proton collisions recorded at the Large Hadron Collider in 2010, yielding a sample of 768,687 events containing a high-quality central jet with transverse momentum larger than 85 GeV. Using CMS's particle flow reconstruction algorithm to obtain jet constituents, we extract the 2-prong substructure of the leading jet using soft drop declustering. We find good agreement between results obtained from the CMS Open Data and those obtained from parton shower generators, and we also compare to analytic jet substructure calculations performed to modified leading-logarithmic accuracy. Although the 2010 CMS Open Data does not include simulated data to help estimate systematic uncertainties, we use track-only observables to validate these substructure studies.
The CERN Open Data Portal is the access point to a growing range of data produced through the research performed at CERN.

It disseminates the preserved output from various research activities, including accompanying software and documentation which is needed to understand and analyse the data being shared.
Opening “things” up
Conclusions

We want to build services that respond to the community's growing demands

How do we do this best - so that it works?

We have to work together with the community

○ Continuously consult and test with the physicists/users
○ Incorporate expert insight into service design - generic functions only go so far
○ Build services that are integral to the research workflow
○ Create incentives that matter to the physicists

Implications for Open Science and reproducible research:

○ Invite the researchers community to Open Science by stressing reproducibility and reusability
○ Build off the rich content and knowledge offered by the community and extend their impact
References / Literature

(d) REANA Github Page. https://github.com/reanahub