IHE Water Education

Mapping and quantification of groundwater-surface water exchange along a headwater stream using Distributed Temperature Sensing:

First findings from the Wüstebach Catchment, Germany

8th Galileo Conference, A European vision for hydrological observations and experimentation NAPLES | ITALY | 12 JUNE 2023

Jochen Wenninger¹, Konstantina Katsanou¹, Alessandro Cattapan¹, Raymond Venneker¹, Heye Bogena², and Roland Bol²

¹IHE Delft, Department of Water Resources and Ecosystems, Delft, Netherlands ²Forschungszentrum Jülich GmbH, Jülich, Germany

Investigate the spatial and temporal interconnection between surface- and groundwater in the Wüstebach Catchment

Quantifying the interaction between surface water and groundwater Mapping of surface water and groundwater interconnection Understanding the spatial and temporal variability of surface- and groundwater dynamics

The Wüstebach Catchment

- Part of the Eifel National Park
- Covers an area of **38.5 ha**
- Mean altitude of about 610 m
- Mean precipitation 1200 mm/a
- Geology is dominated by Devonian shale covered by a periglacial solifluction layer of about 1–2 m
- Main soil texture is silty clay loam

Bogena, H., et al. (2018), doi: 10.2136/vzj2018.03.0055.

Distribution of Electrical Conductivity

High variability of EC values along the stream and tributaries ranging from 50 - 400 μ S/cm

DTS - Distributed Temperature Sensing

DTS: Ultima XT DTS - 8ch 10 km range, 25 cm sampling Cable: Tacticcal FOC, 4 MM, OM3, 6.0 mm, 300 m Installation on 2022-10-26 with 15 minutes sampling interval

Installation of fiber optic cable at W14 (2022-10-29)

Ultima XT DTS setup at W14 (2022-10-29)

Splicing the fiber optic cable at W6 (2022-11-05)

Ultima XT DTS setup next to W14 (2022-12-11)

DTS - Distributed Temperature Sensing

DTS data from 2022-10-26 until 2022-12-11 in a waterfall plot. Raw data is not corrected for distance offset and cable exposure to the atmosphere.

e.g. dark blue areas between 27 m and 48 m and around 179 m are exposed to the atmosphere.

2022-10-26 to 2022-12-11

 $\Delta T_{min} = 2.6^{\circ}C$

Q measurements -Std

Discharge measurements – Total inflow [L/s]

Mass balance calculations

 $Q_T \cdot C_T = Q_{sw} \cdot C_{sw} + Q_{gw} \cdot C_{gw}$

2022-11-26	Unit	#12	#11	#10	#09	#08	#07	#06	#05	#04	#03	#02	#01
Location	m	0	12	32	54	115	133	171	232	274	315	335	363
Q	L/s	0.5	0.96	2.13	3.35	4.08	4.54	5.72	6.93	8.38	9.15	9.65	9.98
EC	μS/cm	367	332	297	295	251	244	225	216	209	212	212	231
Q_sw	L/s		0.00	0.00	0.81	0.67	0.00	0.12	0.00	0.00	0.00	0.00	0.05
EC_sw	μS/cm		0	0	298	83.5	0	66.4	0	0	0	0	404
Q_gw	L/s		0.22	0.89	0.12	0.12	0.35	0.78	0.92	1.10	0.59	0.38	0.21
EC_gw	μS/cm		254	269	248	250	182	166	173	176	244	212	866

Temperature modelling - HFLUX

HFLUX Stream Temperature Solver Version 3.1 (2019) Anne Marie Glose, Laura K. Lautz, and Emily Baker, Syracuse University, USA

Main input data:

- Water temperatures along the stream reach (DTS measurements)
- Discharge at the upstream and downstream boundary
- Stream reach conditions
- Solar radiation, air temperature, relative humidity, wind speed

Flux

Flux

2022-11-08 to 2023-02-10

HFLUX – Temperature at W14; 126 m

2022-11-08 to 2023-02-10

HFLUX – Groundwater contribution

- The **DTS** installation helped in the **identification of hotspots** of groundwater exfiltration.
- The high EC values in the stream (200-400 μS/cm) cannot be justified by the inflow from the shallow periglacial drift cover layer (200-275 μS/cm) alone and therefore there should be a contribution from a deeper, more mineralised aquifer system of lower water temperature.
- The combination of **DTS measurements and HFLUX modelling** allowed the **continuous quantification of surface- and groundwater fluxes**.

Acknowledgements: Special thanks to Miriam Coenders and Gijs Vis (TU Delft, Department of Water Management)