Potential and limitations of cosmic-ray
neutron sensors for irrigation
management in small fields
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Cilotapple orchard (Agia Greece)

Soil moisture (SM) monitoring is key in irrigation management as it helps The pilot field is in Agia (Greece). Itis a | @ﬂ@@ﬂaﬂ?&}é})) w AfRN;
reduce water consumption while mitigating crop losses. 1.17 ha apple orchard equipped with , s el ﬁ S

Cosmic ray neutron sensors (CRNS), due to their large sensed prinkle irrigation. | - Hy;;m::er
volume (~130-210 m radius and ~15-85 cm de N (non-irrigated)

are a promising method in SM monitoring and —35
Irrigation management. R

Unfortunately, a CRNS provides one single
estimation of SM for the measured area,
and complex sub-footprint heterogeneities,
such as small irrigated fields (~1-2 ha),
are challenging to disentangle.
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= The pilot field Is equipped with 12
nodes of SM sensors (at 3 depths),
four hydrometers, a meteorological
station, and a CRNS.

= An additional SM node Is located

In this work, we test a novel correction
for irrigation monitoring with CRNS In
small (~1 ha) irrigated fields.

| v e , outside the field. This is used to
Provides neutron count rate (N) and measure SM in the non-irrigated area
SM (6) for the surrounding area. (6,,) and thus estimate a synthetic

How to isolate N>, and obtain 6, for the irrigated field?  neutron count (Ng,.) for such area.
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Neutron transport simulations:

Four simulations are sufficient
to apply the correction method
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Intensity of environmental neutrons obtained with URANOS simulations of neutron transport - | 1 I| | I | | || ” |l ‘ ‘ || | |
for a simplified 1 ha field scenario (left) and for the area that surrounds the pilot field (right). — 1l a L | L | | L
RMSE = 0.058 cm3 cm-3
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Advantages and limitations Conclusions & outlook

CRNS In place of dense sensor network In irrigation monitoring: = CRNS can monitor and inform irrigation in small irrigated fields

* A dense sensor network generally needs to be removed during (~1 ha) when supported by an additional inexpensive SM sensor
agricultural management and is more costly to maintain

= The proposed correction allows to use a CRNS in fields considerably = CRNS, when corrected, could replace a dense sensor network
smaller than the CRNS footprint

Neutron transport simulations:

= Simplified neutron transport simulations provide similar results to those
obtained using simulations tailored to the target area

* Reduce computation effort and increase standardization

= Further studies are needed to standardize the methodology and
test results for different environments and irrigation methods
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