NAPLES | ITALY | 12–15 JUNE 2023

Landslide Early Warning System based on Machine learning and radar data

AUTHORS

Giovanni Francesco Santonastaso, Fereshteh Taromideh, Pasquale Marino, Daniel Camilo Roman Quintero, and Roberto Greco

Università degli Studi della Campania "Luigi Vanvitelli", Department of Engineering, Aversa (CE) Italy (giovannifrancesco.santonastaso@unicampania.it)

Introduction

In the island of Ischia, on November 26, 2022, heavy rain triggered landslides that killed people and caused great damage to buildings and roads. The 6-hour cumulative rainfall (between 00:00 on 25/11 and 06:00 on 26/11) resulted 126 mm. The storm occurred can be considered a convective event.

Landslide Early Warning System (LEWS)

Input Data: Radar Data

- ✓ Radar Data cover the entire national territory. Spatial resolution resolution: 1kmx1km;
 Temporal resolution: 5 minutes
- ✓ Radar data were resampled with a time interval of 10 minutes in order to fit the same time interval of rain gauge
- ✓ The average value of Surface Rainfall intensity were calculated in the three monitoring areas:
- 1. Yellow square area (located 20km from Ischia): ASR20km;
- 2. Red square area (located 10 km from Ischia): ASR10km;
- **3. Green square area** (located at border of Island): **ASRIschia**.

Input Data: Rainfall data

✓ 4 Rain Gauges installed in Ischia with a temporal resolution of 10 minutes;

✓ For each event the cumulated rainfall, H_i, was computed;

✓ MIT criteria was adapted for defining rainfall events: a rainfall event is defined as a period of rainfall with preceding and succeeding dry periods more than MIT (≥ 2 hours);

✓ Based on 5 thresholds values the flowing rainfall classes are defined and:

35 mm \leq C1 < 50 mm 50 mm \leq C2 < 70 mm 70 mm \leq C3 < 100 mm 100 mm \leq C4 < 160 mm C5 \geq 160 mm

Input Data: input Time Serie for classifier model

- ✓ The data are collected from 19/10/2020 to 31/12/2022. 365 rainfall events are identified;
- ✓ The input array used to predict the class of rainfall at time t + Δt, where Δt interval of prediction; is reported in the following table:

H _i	ASR20km	ASR10km	ASRIschia
H ₁	ASR20km ₁	ASR10km ₁	ASRIschia ₁
H ₂	ASR20km ₂	ASR10km ₂	ASRIschia ₂
H ₃	ASR20km ₃	ASR10km ₃	ASRIschia ₃
:	:	:	:
:	:	:	:
:	:	:	:
H _{N-∆t}	ASR20km _{N-∆t}	ASR10km _{N-∆t}	ASRIschia _{N-∆t}

Classifier

Random forest (RF) is a machine learning algorithm that uses an ensemble of decision trees to classify data. Each decision tree is trained on a subset of the data and a random set of features, and the final prediction is made by combining the results of all trees.

Advantages:

- 1. RF can handle large datasets without overfitting;
- 2. RF can capture complex relationships between variables;
- 3. Finally, it can provide insights into feature importance, showing which variables are most relevant for classification.

Results

3 models of Random forest are trained using different **4**t interval of prediction:

M1 with $\Delta t = 0.5h$; M2 with $\Delta t = 1h$; M3 with $\Delta t = 3h$.

Results

What happens if the model has to predict the precipitation class in case of a class shift, i.e. if the class of the input cumulative precipitation is different from the one to be

predicted?

M1 with Δt =0.5h Number of shifts=12 Error prediction = 1 Lower class pred= 0 Greater class pred=1

M2 with ⊿t=1h
Number of shifts=21
Error prediction = 3
Lower class pred= 0
Greater class pred=3

Conclusions

- ✓ A novel approach to LEWS, based on machine learning, radar and rainfall data is proposed;
- ✓ 3 Random forest models with different predictive power are trained (M1 with Δt =0.5h; M2 with Δt =1h; M3 with Δt =3h);
- ✓ The results show good performance for both 3 models with the lowest accuracy value of 82%; all 3 models also perform well with a class change;
- ✓ All tree models perform better at predicting higher classes (more important in the case of LEWS) than lower classes.

Future works

- ✓ Improve the model by adding more information as input data to include not only the distance from the island, but also the direction of the storm;
- ✓ Use the RF model as an interpolation tool to combine radar and precipitation data as hydrologic input.

Thank you for your attention!

