

POLITECNICO

MILANO 1863

Satellite Images Potentiality for Calibration of Hydrodynamic Model in **Estuaries and Coastal Areas**

Antonia Menzione¹, Marco Mancini¹, Chiara Corbari¹, Vito Talesca², Mariano Buccino³ ¹: Department of Civil and Environmental Engineering, Politecnico di Milano ²: School of Engineering, Università degli Studi della Basilicata ³: Department of Civil and Environmental Engineering, Univesità degli studi di Napoli Federico II

AIM OF WORK

Computational finite element hydrodynamic models capable of

Calibrate the model with the Remote

INTRODUCTION AND CASE STUDY

The application is dedicated to the Ofanto River, located in the South of the Adriatic Sea, Italy. This area is largely anthropized due to its proximity to some of the main cities of the Puglia region. The aim of the study was to recreate the sediment dispersion occurring during an extreme flood event using numerical modelling for the simulation of the hydrodynamic and morphodynamical process, and remote sensing for the validation and calibration of the model. The event simulated occurred on March 11th, 2021, and was characterized by extreme precipitations and strong winds, causing a big dispersion of a mixture of suspended sediments, nutrients and pollutants of anthropic origin into the sea and along the coast.

plume events

Study of a of river

replicating river plume

events

Sensing images

METODOLOGY

Model domains

River model Domain

Coastal model domain

Remote sensing images

River model results used as input for the coastal model

Legend

Satalite imgae on March 11,2021

Schematic representation of the prototypical plume comprising all dynamical regions. Image and description from (Horner-Devine et al., 2015)

Flooded area from Satallite image

Flooded area simulated in the river model

RESULTS

3D simulation of the plume on March 11,2021

2D simulation of the plume on March 11,2021

Satalite data applying a spectral band-based formula on March 11,2021

	SSC (satellite)	3D Model
Offshore plume distance	4700 m	5200 m
Offshore plume distance (near Barletta harbour)	1850 m	1500 m
Alongshore plume distance (beyond Barletta harbour)	>12 km	>12 km
Near-field tracer concentrations	$\geq 40 \text{ mg/L}$	$\geq 40 \text{ mg/L}$
Far-field tracer concentrations (near Barletta harbour)	1 - 2.5 mg/L	2.5 - 5 mg/L
Far-field tracer concentrations (beyond Barletta harbour)	0.5 - 2.5 mg/L	0.5 - 2.5 mg/L