

Connecting NADW transports to OBP variations with the high-resolution ocean model VIKING20X

L. Shihora¹, Torge Martin², Anna Christina Hans², Rebecca Hummels², Michael Schindelegger³, Henryk Dobslaw¹

¹German Research Centre for Geosciences, Potsdam, Germany ²GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany ³Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany

10. Oct. 2025

Connection Meridional Transport and OBP

Major AMOC Components

[1] Little et al. (2019), 10.1029/2019JC015152

Connection Meridional Transport and OBP

Major AMOC Components

[1] Little et al. (2019), 10.1029/2019JC015152

Ocean Model VIKING20X

Test the connection in a high-resolution ocean model: VIKING20X

VIKING20X:

- Ocean model with high-res nest for the Atlantic
- Provided by GEOMAR
- AMOC representation well assessed by Biastoch et al. (2021)(10.5194/os-17-1177-2021)
- Access to OBP and meridional transports

NADW:

- Considering transports between 1000 3000m depth from 25°N - 40°N
- High-pass filtered up to 5 years

2

Helmholtz Lentre

GFZ

HELMHOLTZ

Reconstructing Transport Anomalies from OBP

Correlation

NADW Transports [Sv]

$$T(y,z) \approx -\frac{p_W}{f\rho_0}$$

$$T_{\rm NADW} \approx - \int_{3000 \text{ m}}^{1000 \text{ m}} \frac{p_W(y, z)}{f \rho_0} dz$$

- Integration possible given high resolution of VIKING20X
- Compare OBP-derived NADW transports to true model transport anomalies:
 - Correlation: 0.76
 - 1.13 Sv • RMSE:

Reconstructing Transport Anomalies from OBP

- Average OBP in region of continental slope (1000 3000m)
- Calculate scaling factor through regression to model transports

- Compare OBP-derived NADW transports to true model transport anomalies:
 - Correlation: 0.74
 - 1.47 Sv • RMSE:

NADW transport anomalies *can* be reconstructed from the average OBP along the continental slope.

From satellite gravimetry ?

Reconstructing Transport Anomalies from OBP

OBP Variability Western Atlantic

- OBP along the continental slope is very confined
- Amplitude of about 1 hPa, i.e//1 cm EWH
- Surrounded by larger anomalies in deep ocean and on the shelf
- Future gravity mission constellations (MAGIC) may resolve target region
- Might need specialised assessment

Well-defined target signal should be implemented in future mission simulation studies.

South Atlantic

Helmholtz Centre POTSDAM

- Similar assessment for South Atlantic between 20°S 33°S
- Slightly more complex due to different overturning structure
- OBP signals from shelf region can help in transport estimation
- Compare OBP-derived NADW transports to true model transport anomalies:
 - Correlation: 0.72
 - RMSE: 0.97 Sv

• South Atlantic OBP signatures to be included in ESA ESM as well

Synthetic Transport-Related OBP Signals

- OBP Signals for ESA ESM should:
 - Contain only transport-related signals (clean target signal)
 - Realistic Amplitude
 - Cover continental slope as well as shelf
- 'Raw' VIKING20X OBP data contains 'noise'
 - -> Create synthetic OBP data through regression
- Fit model transport time-series to OBP at each grid point and derive constant scaling field
- Scaling field multiplied with model transport gives synthetic OBP signals containing only transport signals
- Select region of interest

80°W 70°W 60°W 50°W

HELMHOLTZ

Summary & Next Steps

- Provide OBP signals related to overturning for satellite simulation studies
- Use VIKING20X ocean model data
- Model transports can be reconstructed using average OBP with correlation above 0.7
- Create synthetic transport-related OBP data for in ESA ESM
- Finalise synthetic OBP data (filtering to prevent Gibbs effects)
- Transformation into ESA ESM format
- Publication
- Explore OBP signatures of other deep ocean transports (such as Antarctic Bottom Water)
- Feedback welcome!

HELMHOLTZ

