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Background

• Multiple studies have demonstrated enhanced spatial resolution in mean field, trends, annual signal 
by stacking normal equations, e.g., series of GOCO (TU Graz) & EIGEN (GFZ/GRGS) models:

GSFC monthly trend

Kvas et al., (2020), Earth System Science Data, 
https://doi.org/10.5194/essd-13-99-2021 

Loomis et al., (2019b), Frontiers in Earth Science, https://doi.org/10.3389/feart.2019.00235

• Signal-to-noise improvements from global stacked high-resolution mascon trends:
GSFC high-res trend

Loomis et al., (2021), JGR: Solid Earth, https://doi.org/10.1029/2021JB023024
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Background

• Next logical step: Apply the same approach within the GRACE/GRACE-FO record to get both 
higher spatial resolution & temporal information

Loomis et al., (2022), 
AGU Fall Meeting

We start by assigning each GPS vertical displacement a standard error of 1 mm and each Laplacian constraint
between adjacent pixels a standard error of 18 mm. This 1 to 18 ratio results in a reasonable distribution of
water thickness as a function of location (Figures S13 and S14, top). Using these beginning standard errors
of 1 mm and 18 mm results in chi-square misfits that are significantly too large. The misfit in each inversion
can be quantified by the normalized sample standard deviation (NSSD), which is defined to be the square
root of reduced chi-square. We find the NSSD values to range from 1.4 to 4.6 depending on the month of
the inversion (relative to 1 January 2011) or the time period of the inversion (e.g., October 2011 to October
2015). This simply means that the original assigned errors are too small by a factor of 1.4 to 4.6. We follow
standard practice (e.g., Press et al., 1992) and multiply (scale upward) uncertainties in water change calcu-
lated using linear propagation of errors by the NSSD (thus assuming that the errors are random, not systema-
tic) to obtain realistic uncertainties.

In the inversions for the monthly series from 2006 to 2017, we find the NSSD values to increase as the time
from January 2011 lengthens. The NSSD is 2 mm for months within 2 years of January 2011, 2.5–3 mm for
months 2 to 4 years from January 2011, and 3.5–4 mm for months 4 to 6 years from January 2011. The
NSSDs in the inversions for specific time periods increase in similar fashion as the time period lengthens.
The result indicates that the true uncertainty in vertical displacement is 2 mm for months 2 years apart
and increases to 4 mm for months 5 years apart. This result is consistent with the conclusion that random
walk is present in the GPS series (Amiri-Simkooei et al., 2017; Dmitrieva et al., 2015).

That the true uncertainty in a GPS vertical displacement is 2 to 4mm is also indicated by the dispersion of GPS
monthly displacements about a standard model. For the 1276 GPS position-time series, the root-mean-
square misfit of a model consisting of an offset, a rate, and a sinusoid with a period of year has a median value
of 3.3 mm, and quartile values of 2.7 and 3.5 mm. These RMS values overstate the true uncertainty because
sustained fluctuations due to periods of drought or years of heavy precipitation are not included in
the model.
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Figure 6. (left) Vertical land displacement from GPS and (right) change in total water storage during heavy precipitation from October 2009 to October 2011. GPS
data in the Central Valley are omitted in calculating vertical land displacement. Total groundwater loss in Central Valley is set equal to +13 km3 in the inversion:
Groundwater loss at 1/4° pixels in the Central Valley (small gray letters) is set equal to 0.60 m (Zs), 0.45 m (Ys), 0.30 m (Xs), or 0.15 m (As).
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GRACE: GSFC high-res GPS: Argus et al. (2017)GRACE: GSFC monthly

In California, the 95% confidence limits in change in equivalent water thickness inferred from GPS range from
0.080 m for times 2 years apart to 0.150 m for times 5 years apart. GPS can accurately determine change in
total water storage in each of the three mountain range provinces in California (the Sierra Nevada, Coast
Ranges, and Klamath mountains, each with an area on the order of 50,000 km2). The GRACE determination
of total water storage is more tightly constrained than the GPS in areas 400 km in width and length
(160,000 km2 in area), such as the Sacramento-San Joaquin River basin.

4.5. Spatial Smoothing of the Water Change Estimates

The 1 to 18 ratio between the standard error in GPS vertical displacement and the standard error in the
Laplacian constraint results in an optimal distribution of water thickness as a function of location (Figures
S13 and S14, top). If we were to have taken the ratio to be 1 to 12, we would find smoothing to be too high
from east to west across the Sierra Nevada (Figures S13 and S14 bottom left): inferred water change does not
attain as high of a value as it should near the mountain crest, and too much water change is pushed out into
the Great Basin. If we were to have taken the ratio to be 1 to 27, we would find too many local maxima and
minima to arise (e.g., in Oregon during drought from 2011 to 2015).

The values of water change inferred fromGPS do not depend very strongly on the ratio between the standard
errors (Figures S13 and S14). If we were to substitute strong smoothing (σ2 12 mm), we would find water loss
in the Sierra Nevada during drought from 2011 to 2015 to decrease by 3 km3 (from 45 to 42 km3), a 6%
reduction; weak smoothing (σ2 27 mm) would increase the water loss by 3 km3 (from 45 to 48 km3), a 6%
increase. For the season of heavy precipitation from October 2016 to April 2017, changing to strong smooth-
ing (σ2 12 mm) reduces water gain in the Sierra Nevada by 6 km3, a 13% decrease, whereas weak smoothing
(σ2 27 mm) increases water gain by 6 km3, a 13% increase. The weaker smoothing (σ2 27 mm) collapses more
of the water change into the Sierra Nevada than does the optimal smoothing (σ2 18 mm), representing an
advantage in this regard because it reduced GPS leakage outside of narrow belts of water change such as
the Sierra Nevada (the leakage is similar to that for GRACE but less pronounced).
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Figure 7. (left) Vertical land displacement from GPS and (right) change in total water storage during severe drought from October 2011 to October 2015. GPS data in
the Central Valley are omitted in calculating the vertical land displacement. Total groundwater loss in Central Valley is set equal to !34 km3 in the inversion:
Groundwater loss at 1/4° pixels in the Central Valley (small gray letters) is set equal to !1.64 m (Zs), !1.23 m (Ys), !0.82 m (Xs), or !0.41 m (As).
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Recent Science Application: Hall et al., 2024

Hall, D. K., Loomis, B. D., DiGirolamo, N. E., & Forman, B. A. (2024). Snowfall replenishes groundwater loss in the Great Basin of the western United States, but cannot 
compensate for increasing aridification. Geophysical Research Letters, 51, e2023GL107913. https://doi.org/10.1029/2023GL107913

NASA press release: https://www.nasa.gov/science-research/earth-science/nasa-satellites-find-snow-didnt-offset-southwest-us-groundwater-loss/ 

Study summary:
• Data sets

o Terrestrial water storage (GRACE/-FO)
o Snow mass (SWE, days snow cover, snow depth)
o Land surface temperature (MODIS)

• The 2002–2023 terrestrial water storage 
decline in the Great Basin (GB) is more 
pronounced in the western GB than in the 
eastern GB.

• Even in notable snow years like 2010–2011, 
2016–2017, 2018–2019, and 2022–2023, 
mass losses observed by GRACE/-FO remain 
consistent, due to the downward trend of 
groundwater storage.
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Recent Science Application: Hall et al., 2024

Hall et al. (2024)

• Use of high-res reveals consistent trends in the GB across 
2002-2011 and 2011-2023, which is the opposite conclusion 
from the monthly mascons

Monthly trends High-res trends
Rate 

(Gt/yr)
Total
(Gt)

Rate
(Gt/yr)

Total
(Gt)

Oct 2002 – Sep 2011 -0.1 -0.6 -3.4 -30.5
Oct 2011 – Sep 2023 -4.4 -52.8 -3.2 -38.6
Sum of 1st two rows -- -53.4 -- -69.1
Oct 2002 – Sep 2023 -4.0 -85.7 -3.4 -74.1

• Use of high-res trends reduces the estimated GB trend 
magnitude to due the mitigation of leakage from the Central 
Valley

• Disconnected trend estimates can lead to large differences in 
estimates of total mass change
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Challenges with Multi-span Regression

Challenge 1: 
a) How to select the regularization parameter, !? 

(challenge common to all regularized estimation)
b) Should different temporal spans optimize ! 

separately, or use a common !?

Challenge 2: 
a) To recover total mass change over multiple spans, 

the regression model should enforce continuity 
(EIGEN RL04 does this to degree/order 90)

!"! = $"%$+'!( #$ $"%)
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Challenges with Multi-span Regression

Challenge 1: 
a) How to select the regularization parameter, !? 

(challenge common to all regularized estimation)
b) Should different temporal spans optimize ! 

separately, or use a common !?

Challenge 2: 
a) To recover total mass change over multiple spans, 

the regression model should enforce continuity 
(EIGEN RL04 does this to degree/order 90)

Challenges 1b and 2a are both addressed by 
modifying our regression model approach.

Original: Independent stacked regression 
solutions over multiple time intervals

New: Spline regression model over entire span
• Proof of concept – 3 parameters consisting of 

1 bias and 2 trends over the same two time 
intervals as the Great Basin study

• Future work – Spline parameters can be 
expanded to include more than two time 
intervals and additional parameters, e.g., 
annual, semi-annual, x2, x3, stochastic
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First Results: Spline Regression Model
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First Results: Spline Regression Model

Oct 2011 to 
Sep 2023

Oct 2002 to 
Sep 2011

Piecewise High-res TrendsMulti-span High-res Trends
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Challenge 1a: How to select !?

Previous work for selecting !:

• Monthly mascons use an approach that minimizes the spatial 
correlation between the estimate and change in the estimate 
due to increasing ! (Croteau et al., 2021)

• High-resolution trend estimation (Loomis et al., 2021) used the 
same approach as the monthly

• Hall et al. (2024) optimized Signal-to-Noise, for full span, and 
used the same ! for subintervals (where Signal ≡ Land RMS, 
Noise ≡ Sahara RMS)
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Challenge 1a: How to select !?

Other potential approaches to select !:

• L-curve criterion – Previously explored and tends to provide overdamped solutions (Save et al., 2012)

• Mean Squared Error (MSE) = Sum of covariance and bias, where bias is a measure of smoothing/ 
leakage (Loomis et al., 2019a) – Difficult to interpret due to unknown truth vector, x

ß Increasing magnitude of x vector 
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Summary

Background:
• Stacking normal equations is very successful at enhancing spatial resolution and signal recovery
• Stacked regression mascons improve signal-to-noise via regularization
• We have successfully applied this method to specific science questions (e.g., Hall et al., 2024)

Today’s presentation:
• We have demonstrated a new regularized regression spline estimator to further leverage this technique 

to maximize spatial resolution while also recovering valuable temporal information
• Selecting the regularization parameter, !, remains a bit of an art form; current methods seem viable

Future work:
• Expand spline parameters and test for specific science questions – Please reach out if interested!
• Improved uncertainty quantification (previous studies have used differences to GOCO-06S over 

common time span)
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