# Optimization and assessment of high-resolution regression mascons for multiple time intervals within the GRACE/GRACE-FO record

Bryant D. Loomis<sup>1</sup>, Terence J. Sabaka<sup>1</sup>, Kenny Rachlin<sup>1</sup>, Dorothy K. Hall<sup>2</sup>, Nicolo E. DiGirolamo<sup>2</sup>, Michael J. Croteau<sup>1</sup>

> <sup>1</sup>Geodesy and Geophysics Laboratory, NASA Goddard Space Flight Center <sup>2</sup>Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center



## Background

• Multiple studies have demonstrated enhanced spatial resolution in mean field, trends, annual signal by stacking normal equations, e.g., series of GOCO (TU Graz) & EIGEN (GFZ/GRGS) models:



Kvas et al., (2020), Earth System Science Data, <u>https://doi.org/10.5194/essd-13-99-2021</u>

• Signal-to-noise improvements from global stacked high-resolution mascon trends:



Loomis et al., (2019b), Frontiers in Earth Science, https://doi.org/10.3389/feart.2019.00235



Loomis et al., (2021), JGR: Solid Earth, https://doi.org/10.1029/2021JB023024



## Background



 Next logical step: Apply the same approach within the GRACE/GRACE-FO record to get both higher spatial resolution & temporal information



## ARD Recent Science Application: Hall et al., 2024





NASA press release: https://www.nasa.gov/science-research/earth-science/nasa-satellites-find-snow-didnt-offset-southwest-us-groundwater-loss

#### Study summary:

Data sets

- Terrestrial water storage (GRACE/-FO)
- Snow mass (SWE, days snow cover, snow depth)
- Land surface temperature (MODIS)
- The 2002–2023 terrestrial water storage decline in the Great Basin (GB) is more pronounced in the western GB than in the eastern GB.
- Even in notable snow years like 2010–2011, 2016–2017, 2018–2019, and 2022–2023, mass losses observed by GRACE/-FO remain consistent, due to the downward trend of groundwater storage.

Hall, D. K., Loomis, B. D., DiGirolamo, N. E., & Forman, B. A. (2024). Snowfall replenishes groundwater loss in the Great Basin of the western United States, but cannot compensate for increasing aridification. *Geophysical Research Letters*, 51, e2023GL107913. <u>https://doi.org/10.1029/2023GL107913</u>

## D. Recent Science Application: Hall et al., 2024





|                                 | Monthly trends  |               | High-res trends |               |
|---------------------------------|-----------------|---------------|-----------------|---------------|
|                                 | Rate<br>(Gt/yr) | Total<br>(Gt) | Rate<br>(Gt/yr) | Total<br>(Gt) |
| Oct 2002 – Sep 2011             | -0.1            | -0.6          | -3.4            | -30.5         |
| Oct 2011 – Sep 2023             | -4.4            | -52.8         | -3.2            | -38.6         |
| Sum of 1 <sup>st</sup> two rows |                 | -53.4         |                 | -69.1         |
| Oct 2002 – Sep 2023             | -4.0            | -85.7         | -3.4            | -74.1         |

• Use of high-res reveals consistent trends in the GB across 2002-2011 and 2011-2023, which is the *opposite conclusion* from the monthly mascons

- Use of high-res trends <u>reduces</u> the estimated GB trend magnitude to due the <u>mitigation of leakage</u> from the Central Valley
- Disconnected trend estimates can lead to large differences in estimates of total mass change

# Challenges with Multi-span Regression

### Challenge 1:

- a) How to select the regularization parameter,  $\lambda$ ? (challenge common to all regularized estimation)
- b) Should different temporal spans optimize  $\lambda$  separately, or use a common  $\lambda$ ?

 $\widehat{m}_i = \left(A^T W A + \lambda_i P\right)^{-1} A^T W d$ 

Overdamped solution:  $\lambda$  is too large



Underdamped solution:  $\lambda$  is too small





#### **Challenge 2:**

a) To recover total mass change over multiple spans, the regression model should enforce continuity (EIGEN RL04 does this to degree/order 90)

## Challenges with Multi-span Regression

#### Challenge 1:

- a) How to select the regularization parameter,  $\lambda$ ? (challenge common to all regularized estimation)
- b) Should different temporal spans optimize  $\lambda$  separately, or use a common  $\lambda$ ?

#### **Challenge 2:**

a) To recover total mass change over multiple spans, the regression model should enforce continuity (EIGEN RL04 does this to degree/order 90) **Challenges 1b and 2a** are both addressed by modifying our regression model approach.

**Original:** Independent stacked regression solutions over multiple time intervals

**New:** Spline regression model over entire span

- Proof of concept 3 parameters consisting of 1 bias and 2 trends over the same two time intervals as the Great Basin study
- Future work Spline parameters can be expanded to include more than two time intervals and additional parameters, e.g., annual, semi-annual, x<sup>2</sup>, x<sup>3</sup>, stochastic

## First Results: Spline Regression Model



## First Results: Spline Regression Model



**Piecewise High-res Trends** 

## Challenge 1a: How to select $\lambda$ ?

#### Previous work for selecting $\lambda$ :

- Monthly mascons use an approach that minimizes the spatial correlation between the estimate and change in the estimate due to increasing  $\lambda$  (Croteau et al., 2021)
- High-resolution trend estimation (Loomis et al., 2021) used the same approach as the monthly
- Hall et al. (2024) optimized Signal-to-Noise, for full span, and used the same λ for subintervals (where Signal ≡ Land RMS, Noise ≡ Sahara RMS)



## Challenge 1a: How to select $\lambda$ ?

#### Other potential approaches to select $\lambda$ :

- L-curve criterion Previously explored and tends to provide overdamped solutions (Save et al., 2012)
- Mean Squared Error (MSE) = Sum of covariance and bias, where bias is a measure of smoothing/ leakage (Loomis et al., 2019a) – Difficult to interpret due to unknown truth vector, x



## GODARD EARTH SCIENCES

## Summary

#### Background:

- Stacking normal equations is very successful at enhancing spatial resolution and signal recovery
- Stacked regression mascons improve signal-to-noise via regularization
- We have successfully applied this method to specific science questions (e.g., Hall et al., 2024)

### Today's presentation:

- We have demonstrated a new regularized regression spline estimator to further leverage this technique to maximize spatial resolution while also recovering valuable temporal information
- Selecting the regularization parameter,  $\lambda$ , remains a bit of an art form; current methods seem viable

#### Future work:

- Expand spline parameters and test for specific science questions Please reach out if interested!
- Improved uncertainty quantification (previous studies have used differences to GOCO-06S over common time span)