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Fig 4: Spherical harmonics triangles of the solutions' average climatology residual for coefficients close to resonance orders, manifesting as vertical stripes. This
magnitude, average formal error, and the ratio between the two. A climatology fit (bias, corresponds to an increase in signal RMS observed in both the white noise and full
trend, annual, semi-annual) is reduced from the solution time series, before computing covariance solutions (a,d). No such increase is visible for the white noise solution
the RMS, a proxy for solution error at high degrees. Formal error is the simple average formal errors (b). Therefore, the ratio of signal to formal error for the full covariance
of all computed months. The formal error of the RLO7 solution (e) shows an increase  solution (f) shows less discrepancy than that of the white noise solution (c).
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