

Helmholtz Centre POTSDAM

Global high-resolution water storage simulations from the OS LISFLOOD hydrological model

developed by the Joint Research

Commission, open-source software

Flood Awareness System (GloFAS)

Centre (JRC) of the European

• in operational use for the Global

of the Copernicus Emergency

Management Service (CEMS)

Model setup:

• Forcing: ERA5

GSTM2024-53

Helmholtz Centre Potsdam **GFZ GERMAN RESEARCH CENTRE** FOR GEOSCIENCES

Laura Jensen, Robert Dill, Kyriakos Balidakis, Henryk Dobslaw Deutsches GeoForschungsZentrum - GFZ, Department 1: Geodesy, Potsdam, Germany

Overview

We globally evaluate terrestrial water storage (TWS) from the **hydrological model OS LISFLOOD**^[1] with observations from **GRACE/-FO**, **GNSS** and **gauging stations**. We compare the results to older model data from the Land Surface Discharge Model (LSDM) and investigate the influence of the choice of the soil depth on TWS and discharge.

Hydrological model OS LISFLOOD

We perform five OS LISFLOOD runs, which differ in their model version (LR/HR), in the soil depth distribution (HR0/HR1/HR2), and in the initialization routine (HR3).

low resolution (1/10°) input fields from CEMS GloFAS v3.0 (deprecated)

high resolution $(1/20^\circ)$ with soil maps from v1.1.0 of LISFLOOD static and parameter HRO maps for GloFAS^[2] max. soil 2: 3m max. soil 3: 645m

Influence of soil depth on modelled Terrestrial Water Storage (TWS)

 $\beta = \mu_s / \mu_o$ $\gamma = \frac{\sigma_s / \mu_s}{\sigma_s / \mu_s}$ o = Pearson correlation coefficient o = observatior β = bias ratio $\gamma = variability ratio$ $\sigma = std. dev.$

LISFLOOD standard soil maps (HR0). The trend mainly stems from the third soil layer.

Modifying the soil depth map has a strong impact on TWS trends (*Fig. 2*). Compared to HRO, the spurious TWS trends are reduced for HR1 and even more for HR2 and HR3. The impact of an improved initialization routine is demonstrated with HR3.

Evaluation with GRACE/-FO media SD Fig. 4: KGE' for OS LISFLOOD HR3 and LSDM w.r.t. GRACE/-FO (interannual signal) for the 100 largest river basins lodified Kling-Gupta Efficiency [-]

Evaluation with GNSS

To demonstrate the **advantage of the** high resolution we compute vertical displacements from model TWS and compare them to GNSS uplift data.

Conclusions

- High-resolution (1/20°) global daily TWS simulations for 2000 – 2022 are generated with open source model OS LISFLOOD
- Soil depth definition has significant impact on long-term trends in TWS
- Validation with independent observations (GRACE/-FO & GNSS) reveals that OS LISFLOOD outperforms LSDM in several regions
- Small advantage of HR over LR

Article submitted: Jensen, L., Dill, R., Balidakis, K., Grimaldi, S., Salamon, P. & Dobslaw, H. (under review). Global 0.05° Water Storage Simulations with the OS LISFLOOD Hydrological Model for Geodetic Applications.

Next steps:

Fig. 5: Global maps of KGE' for the interannual signal of (a) OS LISFLOOD HR3 and (b) LSDM w.r.t. GRACE/-FO, and (c) KGE' difference between (a) and (b).

OS LISFLOOD HR3 outperforms LSDM in many regions on interannual time scales, especially south of 40°N (*Figs. 4 & 5*).

and (top) LSDM and (bottom) OS LISFLOOD LR, w.r.t. GNSS observations; interannual frequency band

Vertical displacements GNSS: from IGS repro 3	In 59% (55%) of the
(input for ITRF2020),	stations the interannual
~500 stations OS LISFLOOD/LSDM:	GNSS signal is better
Load Greens functions	described by HR1 than
Earth model	by LR (LSDM, <i>Fig.</i> 6).

- Long model run (from 1960)
- Include anthropogenic water use
- Investigate lakes & reservoirs
- Include endorheic lakes

References

[1] Van Der Knijff, J. M., Younis, J., & De Roo, A. P. J. (2010). LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science, 24(2), 189–212. doi: 10.1080/43313658810802549154 [2] Choulga, M., Beck, H., Moschini, F., Mazzetti, C., Disperati, J., Grimaldi, S., Salamon, P., & Prudhomme, C. (2023). LISFLOOD static and parameter maps for GloFAS. European Commission, Joint Research Centre (JRC)

[Dataset]

PID: http://data.europa.eu/89h/68050d73-9c06-499c-a441-dc5053cb0c86 [3] Fan, Y., Li, H., & Miguez-Macho, G. (2013). Global Patterns of Groundwater Table Depth. Science, 339(6122), 940–943. doi: 10.1126/science.1229881

[4] Boergens, E., Dobslaw, H., & Dill, R. (2019). GFZ GravIS RL06 Continental Water Storage Anomalies. GFZ Data Services. doi: 10.5880/GFZ.GRAVIS06L3TWSGravis

HELMHOLTZ

www.gfz-potsdam.de

Contact: Dr. Laura Jensen, laura.jensen@gfz-potsdam.de

usir

Ear