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What happens in the hydrology of the East
African Rift?
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What happens in the hydrology of the East
African Rift?
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What happens in the hydrology of the East
African Rift?

Can we understand the cause of the interannual
TWS variations with meteorological data and
data of the water storage compartment?
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Study Region

* Focus on the northern part of the East
African Rift

* Hydrology dominated by some of the
largest lakes globally and substantial
interannual precipitation variations

* Densely populated along the lake
shores

* Lake Victoria dammed by the
Nalubaale Dam (formerly Owen Falls
Dam)
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Data

P: Global Precipitation Climatology Centre (GPCC) monthly data
P-ET: Standardised Precipitation-Evapotranspiration Index — SPEI
(Instituto Pirenaico de Ecologia)
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(Instituto Pirenaico de Ecologia)
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GWS: TWS-SWS-RZSM

P: Global Precipitation Climatology Centre (GPCC) monthly data
P-ET: Standardised Precipitation-Evapotranspiration Index — SPEI
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TWS and Meteorological Data

TWS:

* Interannual signal of STL

Accumulated precipitation:

e To reduce short-term
variability, each monthly
value is the sum of the
previous 36 months

SPEI:

* Two variants provided,
GPCC and CRU
precipitation data set

* Different PET algorithms

* P-ET accumulated over 36
months, too
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TWS and Meteorological Data

Two extremes, drought prior
to 2006 and flooding 2020ff,
can in general be explained by
meteorological variability
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TWS and Meteorological Data

Two extremes, drought prior
to 2006 and flooding 2020ff,
can in general be explained by
meteorological variability
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TWS and Meteorological Data

Two extremes, drought prior
to 2006 and flooding 2020ff,
can in general be explained by
meteorological variability
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TWS and Meteorological Data

Two extremes, drought prior
to 2006 and flooding 2020ff,

can in general be explained by

meteorological variability
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TWS and Meteorological Data

P and SPEI (GPCC-based)
cannot explain TWS rise
between 2010 and 2018

P and P-ET are essential
drivers of TWS but cannot
explain variability alone, esp.
with the uncertainty regarding
SPEI
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TWS and Water Storage Compartments
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Signal separation with STL
RZSM explains the
majority of annual signal
but little interannual
variability

Drought more
pronounced in SWS
Minimum around 2006
time-shifted between
SWS, TWS, and GWS
Flooding similarly in GWS
and SWS

Large uncertainties of
RZSM propagate to GWS
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TWS and WSC - Yearly Storage Change
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Conclusion

* With different meteorological data sets, both the drought before 2006
and floodings in 2019-2020 can be (partly) explained

e Further investigations into WSCs reveal different compositions of the
WSCs during drought and flooding events

 We showed that the interannual variations of TWS in the region were
both caused by natural precipitation variations and anthropogenic
decisions

* A combination of different meteorological and WSCs observations helps
to understand the complex interannual TWS variations
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