GRACE and GRACE-FO Level-1 V04 Data Processing Status

Christopher McCullough on behalf of the

Science Data System Team from JPL, CSR, and GFZ

NASA Jet Propulsion Laboratory
California Institute of Technology

2024 GRACE/GRACE-FO Science Team Meeting October 8, 2024

Jet Propulsion Laboratory
California Institute of Technology

Transition to IGS20

KBR/GPS POD/USO Performance

- Attitude Reconstruction
- Accelerometer

Transition to IGS20

KBR/GPS POD/USO Performance

- Attitude Reconstruction
- Accelerometer

Transition to IGS20

- Level-1 POD processing has transitioned from IGS14 to IGS20:
 - concurrent with the JPL FLINN GPS orbits/clock product switch
 - products from 2024-08-25 and onward
- GRACE-FO antenna maps in IGS20 were generated using JPL's reprocessed products between 2019-2024

Transition to IGS20

KBR/GPS POD/USO Performance

- Attitude Reconstruction
- Accelerometer

KBR / GPS POD / USO Performance

Performance Metrics:

- 1) Spacecraft trajectory comparison between overlapping consecutive orbit arcs
- 2) Spacecraft clock synchronization on overlapping arcs
- 3) (KBR GPS) range difference
- 4) USO frequency stability

GRACE-FO: May 28, 2018 - Sep, 19 2024 (V04)

GPS POD: Orbit Overlaps

- 2021 software updates mitigate impacts of GPS Flex-power (grey regions)
- Performance has ample margin for science data products (Level-2/3)
- Small improvement in quality after the switch to IGS20

Performance continues to exhibit high quality

Inter-Satellite Range Difference

 2021 software updates mitigate impacts of GPS Flexpower (grey regions)

Performance has ample margin for science data products (Level-2/3)

Performance continues to exhibit high quality

Zoom in on the Transition to IGS20

- Quality of some Level-1 POD metrics slightly improved after the switch
- 1-year Level-2 test showed no significant trends in gravity field recovery

Clock Performance

Spacecraft clock synchronization on overlapping arcs: direct measure of our relative time error: $(Clk_C - Clk_D)_1 - (Clk_C - Clk_D)_2$

- 2021 software updates mitigate impacts of GPS Flex-power (grey regions)
- Increased solar activity has increased volatility.
- Ample margin for science data products (Level-2/3).

High quality performance satisfies requirements*

*Requirement: < 150 ps (≈ 0.5 micron)

USO Frequency Stability

GRACE-FO USO nominal frequencies:

GF-1: $f_0 = 4.832000e6 Hz$

GF-2: $f_0 = 4.832099e6 Hz$

USO frequency scale = $\frac{\text{nominal freq.}}{\text{determined freq.}}$

USO frequency continues to be stable to much better than 1 part per billion

Transition to IGS20

KBR/GPS POD/USO Performance

- Attitude Reconstruction
- Accelerometer

Attitude Reconstruction - Sensors

1) Star Cameras

- > 3 star camera heads
- provides absolute attitude with respect to the inertial frame
- 2) Inertial Measurement Unit (IMU)
 - 4 fiber optic gyroscopes (as planned, gyro 4 turned off on 2019-03-13)
 - relative attitude in terms of angular rates
- 3) Accelerometer
 - > relative attitude in terms of angular accelerations
 - not used for attitude data fusion on GRACE-FO

- LRI Fast Steering Mirror (LSM LRI FSM)
 - relative attitude in terms of pitch/yaw pointing angles
 - has been tested for attitude data fusion – not operational
- 5) Magnetorquers (MTQ)
 - relative attitude in derived angular accelerations
 - Used operationally (for ACC data processing only)

Attitude Reconstruction – SCA Data Availability

Valid SCA data availability over the mission lifetime:

3 camera head units: 74.1 %

2 camera head units: 25.8 %

• 1 camera head unit: 0.1 %

0 camera head units: 0.0 %

SCA data availability continues to meet expectations and performs well

Transition to IGS20

KBR/GPS POD/USO Performance

- Attitude Reconstruction
- Accelerometer

Accelerometer - Status

GF1:

- nominal performance (impulse response issues), no changes
- Operating in NRM (Normal Range Mode)

GF2:

- Performance degraded shortly after launch, with highly correlated noise across all accelerometer axes
- Current operations continue in NRM, persisting noise features

Calibrated Level-1 ACT data product, for GF1, consisting of:

- Outlier detection and removal
- Thruster modeling

Hybrid transplant ACH data product, for GF2

Accelerometer – ACX2 Bundle

Accelerometer data is available in the ACX2 bundle:

- Currently includes improvements to accommodate processing in widepointing mode
- Thruster modeling includes values regressed against the spacecraft regulator pressure differential (version 1)

The ACX2 bundle includes:

- AC0 thruster model (version 0 no regulator pressure regression)
- AC1 thruster model (version 1 regulator pressure regression)
- ACH final combined product to be used for Level-2 processing

Accelerometer – Gravity Field Improvements

- The ACH data included in the ACX2 bundle corresponds to the Level-2 RL06.3 gravity field solutions
- Significant gravity field improvements in wide deadband mode attitude pointing – see JPL Level-2 talk

Accelerometer - Summary

- An update to the calibrated accelerometer product is currently publicly available which uses information derived from the GF2 accelerometer (ACH – within the ACX2 bundle)
- The ACX for fine pointing, ACX2 for wide-pointing months:

ACX	ACX2	ACX	ACX2
Launch - 22/12/31	23/1/1 – 23/2/28	23/3/1 – 23/6/30	23/7/1 - present

- Development utilizes GF2 data in an effort to provide a robust calibration that will continue to provide high quality results as the spacecraft environment evolves
- Subsequent releases will incorporate further analysis and optimally calibrate the accelerometer data for use in diverse spacecraft environments

Transition to IGS20

KBR/GPS POD/USO Performance

- Attitude Reconstruction
- Accelerometer

Reprocessing – GRACE-FO

• A reprocessing of GRACE-FO Level-1 data will be called version 'V05' and provide updates to:

- Homogenize the entire POD time series with IGS20
- Update ACH processing
- Update LRI processing (see talk by Fahnestock)
- Provide HRT (high resolution thermistor) data
- Other minor improvements and optimizations

GRACE Reanalysis Overview – (v05/RL07)

 Goal is to judiciously reprocess GRACE with the same software and configuration used for GRACE-FO to ensure consistent, stable, long-term multi-mission Climate Data Record

- Initial reprocessing and validation, at Level-1/2, with IGS14 was performed for 2004-2016
- Reprocessing was temporarily put on hold to accommodate updates to IGS20 – due the operational nature of GRACE-FO, it was prioritized before updates were made for GRACE

GRACE Reanalysis Overview – (v05/RL07)

- This is planned to be the final Level-1 reprocessing for GRACE (excluding future ACC transplant improvements) and processed as version 'V05'. It includes:
 - Improved precision orbit determination
 - Transition to IGS20 (seasonal geocenter should improve the dynamic modeling)
 - GPS data editing
 - Increased GPS processing data rate
 - Updated antenna maps
 - Updated SCA time tag correction
 - Improved ACC transplant data (utilizing lessons learned from GRACE-FO)
- Level-2 processing will be released as RL07 see SDS Level-2 talks

GRACE Reanalysis Status – (v05/RL07)

Level-1

- In progress processing of GPS POD data to estimate new antenna maps consistent with IGS20
- In progress testing of ACC transplant updates
- Pending processing of the nominal mission (2004-2016)
- Pending processing of the non-nominal mission (2002-2003 and 2016-2017)

Level-2

- Pending validation of final Level-1 processing
- In progress optimization of Level-2 processing strategies (gravity field improvements are evident in JPL RL06 to RL07 – see SDS Level-2 talks and poster by Matthias Ellmer)
- Several options for updated background/de-aliasing models are being discussed (AOD, tide models, etc.), as well as updates to processing, parameterization, etc. – see CSR Level-2 talk

Thank you!!