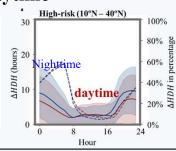

Takeaway

Findings

Asymmetry in cooling potential and heat risk

Baseline WBGT


Implications and actions required

- Combined heat mitigation measures are more effective in highlatitude cities.
- Low-latitude humid climate regions, and cities with low access to AC, would require accelerated actions and innovations.
- Adaptation measures (e.g., heat shelter) need to be included to address future urban heat, especially in regions with lower cooling effectiveness.

Larger nighttime cooling potential than daytime

Mitigated WBGT

 \prod

Different strategy required to address both daytime and nighttime heat stress:

- **Nighttime**: These city-scale mitigation measures (green transformation, anthropogenic heat reduction) are more effective during nighttime.. (**AT**↓, **RH**↓, **WS**↑)
- **Daytime**: implement reflective surfaces at city-scale, also provide shading devices, urban street trees. (**MRT**)

Ding, X., Fan, Y., Zhao, Y., Ge, J., Ürge-Vorsatz, D., and Carmeliet, J.: Unequal potential to mitigate future urban heat for cities in different climates, 12th International Conference on Urban Climate, Rotterdam, The Netherlands, 7–11 Jul 2025, ICUC12-904, https://doi.org/10.5194/icuc12-904, 2025.

THANK YOU

Xiaotian Ding (Seeking Postdoctoral Position)

My ResearchGate

Expected 09/2025 (Zhejiang University, joint supervised in ETH, Zurich)

College of Civil Engineering and Architecture, Zhejiang University, China Chair of building physics, D-MAVT, ETH Zurich, Switzerland dingxt@zju.edu.cn; xiading@ethz.ch

This work is ready to be submitted:

Ding, X, Fan, Y., Zhao, Y., Ürge-Vorsatz, D., Ge, J., & Carmeliet, J.(to be submitted). Asymmetric global urban cooling capacity calls for accelerated and context-specific actions.

selected publications at building-scale

- [1] Ding, X., Zhao, Y., Fan, Y., Li, Y., Ge, J. (2023). Machine learning-assisted mapping of city-scale air temperature: Using sparse meteorological data for urban climate modeling and adaptation. Building and Environment, 234, 110211.
- [2] Ding, X., Zhao, Y., Strebel, D., Fan, Y., Ge, J., & Carmeliet, J. (2024). A WRF-UCM-SOLWEIG framework for mapping thermal comfort and quantifying urban climate drivers: Advancing spatial and temporal resolutions at city scale. Sustainable Cities and Society, 112, 105628.