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Introduction Uncertainty in processes and data

Canopy refers to the above-ground portion of plants, for example tree crowns. Processes - Do canopy albedo variations matter?

Albedo describes the reflectivity of a surface as the ratio of reflected radiation to incident radiation. e How large is the seasonal variability in canopy albedo as used in JSBACH?

The observations The model

e Leaves change their colour not only before they are shed but e The canopy albedo parameters of

e Do we need to include a seasonally varying parametrization or not?

» Derive a parameter time series to judge seasonal variability.

over the whole seasonal cycle. Also the structure of the canopy = JSBACH describe the reflectivity

changes over the seasons. Both effects lead to a seasonally  of a homogeneous, dense, closed Data - How can we derive parameters from observations?

changing canopy albedo. canopy. e We can only observe grid box albedo but not canopy albedo on its own.
e Inversions of remote sensing observations also indicate that the e The model considers background e How can we use observations with state dependent errors?
radiative properties of individual leaves change over the seasons.  albedo and canopy albedo as fixed e How can we include crude, uncertain prior knowledge?

amplitude of seasonal cycle of canopy single scattering albedo (visible) parameters.
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Figure 1: Seasonal cycles of canopy single scattering albedo.
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( Figure 3: Simplified land surface albedo
Figure 2: The same forest canopy looks different at different times of the year. scheme of JSBACH.

The Ensemble Kalman Filter (EnKF) and Gaussian ana

e The EnKF uses an ensemble of ! " | | == prior pdf
model states to represent the prior “ 2 ::’ \ ot ot |
distribution of the state vector. g 4_:' EE:S?_L?EZZ |
e The observation likelihood is 2 Conditiondi mode|
: : < N ' BLUE
given by the observed value and its S ! '," l
error covariance. =l § |
e Bayes' Theorem yields the poste- u' T
rior or conditional distribution R T
of the state given the observation. Figure 5: Bayesian update applied in the EnKF.
e Unobserved states and parameters e If the prior distribution and the observation likelihood are Gaussian,
are updated according to their cor-  the conditional distribution is Gaussian.
relations with observed states as = Mean and covariance are sufficient to characterise all distributions.

estimated from the ensemble. = The ensemble can be easily updated by shifting and scaling.

» Use probability distributions to include initial and observational uncertainty.

dex, that is if the fraction of closed Seq uentlal data aSS|m||at|On

Data assimilation combines model forecasts with observations to yield improved
estimates. In a sequential data assimilation system, this happens cyclically:

— Run the model to generate a forecast.

— Compare the forecast to the observation.

predicted state

1600 serve land surface, meaning grid box — Update states and parameters according to the observation.
albedo. — Produce a new forecast for the next observation.
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Figure 4: The data assimilation cycle.

morphosis

e Because albedo is a double-
bounded quantity and the sought-
after parameters are close zero, we
cannot use Gaussian distributions.

e [o use the EnKF with the non-
Gaussian, bounded distributions,
we use the logit transform,

t(x) = In(x) — In(1 — x),

to map albedo from [0, 1] to
an unbounded interval such that
the transformed variables follow a
Gaussian distribution.
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Figure 6: Logit transform to map albedo

from [0, 1] to an unbounded interval. h
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Results and Conclusion

Figure 7: Correlations of canopy albedo parameters (vertical) with model state vector (grid box albedo, horizontal

).
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reacts well to seasonal changes of the parameters. M s
e [ he retrieval of canopy albedo parameters from real ob- Figure 8: Evolution of the posterior ensemble and the posterior mode compared to the 0.0l &
servations appears to be possible if other error sources synthetic truth for the canopy albedo of tropical evergreen trees (TropEv). & &S

such as shifted phenological cycles can be minimised.
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Figure 9: Error of the posterior mode and ensemble spread for 4 parameters.
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