Measuring ozone and related species from space with The Atmospheric Chemistry Experiment (ACE)

Kaley A. Walker1,2, Patrick E. Sheese1, Chris Boone2, Peter Bernath3,4, and C. Thomas McElroy5

1Physics, University of Toronto; 2Chemistry, University of Waterloo; 3Chemistry and Biochemistry, Old Dominion University; 4Chemistry, University of York (UK); 5Earth and Space Science and Engineering, York University

Atmospheric Chemistry Experiment (ACE) Satellite Mission:
Mission to measure atmospheric composition: profiles of trace gas species, cloud and aerosol extinction and temperature/pressure

Launch date: 12 August 2003
Orbit: 74° inclination at 650 km
Measurement mode: solar occultation

ACE-FTS:
- FTIR spectrometer, 2-13 microns at 0.02 cm⁻¹ resolution
- 2-channel visible/NIR imager, 0.525 and 1.02 microns

MAESTRO:
- dual UV / visible / NIR grating spectrophotometer, 285 to 1030 nm at ~1-2 nm resolution

Pointing: suntracker in ACE-FTS
ACE Mission Status

- Now starting 14th year in orbit – designed for 2 year lifetime
 - Starting to see some degradation in ACE-FTS performance and MAESTRO continues to “age gracefully”

- Since launch, satellite and instrument operations nominal
 - Routine operations began on 21 February 2004
 - As of today, SCISAT has completed more than 70,400 orbits!
 - ~50% of occultations occur in polar regions (> 60 degrees)

- Operation of SCISAT has been approved until end of March 2018

- Catching up on data processing for ACE-FTS v3.5 with transition to shared high performance system (also MAESTRO v3.12.1)
 - Next release of data expected by late 2016
ACE Data Products

• ACE-FTS profiles (current version 3.5; previous v2.2+updates):
 – Tracers: H$_2$O, O$_3$, N$_2$O, NO, NO$_2$, HNO$_3$, N$_2$O$_5$, H$_2$O$_2$, HO$_2$NO$_2$, N$_2$
 – Halogen-containing gases: HCl, HF, ClONO$_2$, CFC-11, CFC-12, CFC-113, COF$_2$, COCl$_2$, COFCl, CF$_4$, SF$_6$, CH$_3$Cl, CCl$_4$, HCFC-22, HCFC-141b, HCFC-142b
 – Carbon-containing gases: CO, CH$_4$, CH$_3$OH, H$_2$CO, HCOOH, C$_2$H$_2$, C$_2$H$_6$, OCS, HCN and pressure / temperature from CO$_2$ lines
 – Isotopologues: Minor species of H$_2$O, CO$_2$, O$_3$, N$_2$O, CO, CH$_4$, OCS
 – Research species: CH$_3$CN, acetone, SO$_2$, peroxyacetyl nitrate (PAN)…

• MAESTRO profiles (current version 3.12.1; validated version 1.2):
 – O$_3$, NO$_2$, optical depth, aerosol and water vapor (research version)

• IMAGERS profiles (current version 3.5; validated version 2.2):
 – Atmospheric extinction & aerosol extinction at 0.5 and 1.02 microns
Perturb different variables by their expected uncertainty and propagating through retrieval

Measurement error
Inverse instrument signal-to-noise ratio at each wavenumber
- Typically on the order of 1-5%, greater at upper altitude limits where lower signal.
 Typically less than v3.5 stat. fitting error

Spectroscopic error
Line strength and position uncertainty from HITRAN 2004
- Typically on the order of 1-5% in stratosphere, 5-20% in upper troposphere.
 Typically less than v3.5 fitting error

Tangent height error
Assumed max of ±0.5 km (extreme value!)
- Typically results in VMR variation ~10-20%

FTS Error Budget Development

2σ propagated error (in %) for v3.5 for O₃

<table>
<thead>
<tr>
<th></th>
<th>Measurement</th>
<th>Spectroscopic</th>
<th>Tangent height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (km)</td>
<td>Altitude (km)</td>
<td>Altitude (km)</td>
<td>Altitude (km)</td>
</tr>
<tr>
<td>-20</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>-10</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>0</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>80</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
</tr>
</tbody>
</table>

N₂O surface sources are ocean and soil emissions, agriculture, biomass burning / fossil fuel combustion.

Sinks are photolysis and reaction with O(^1D).

Clear lower thermospheric N₂O source first shown by ACE-FTS.
- Previous highest observations from MIPAS only went up to ~70 km.
- This is present throughout the year – produced via energetic particle precipitation generating excited state N₂ (A³Σ_u⁺).

P. E. Sheese et al., GRL, 43, 2866–2872 (2016).
ACE-FTS upper atmosphere N₂O

Arctic (60-90 N) January to March time series – using 7-day running mean (in ppbv)
- **Top/middle** – N₂O VMRs / standard error of mean
- Shows descent of N₂O during/ following SSWs – destroys ozone through NOx cycle
- **Lower** – correlation coefficients for N₂O-CH₄ measured simultaneously
- Need to exercise caution when using N₂O as dynamical tracer in polar winter stratosphere

Ozone Loss Derived from ACE-FTS

- Comparison of calculation methods using tracer-tracer correlation, artificial tracer correlation, average vortex profile descent, and passive subtraction with model output (ATLAS & SLIMCAT)

Artificial tracers shown:
- Tracer 1: \(\text{N}_2\text{O}, \text{CH}_4, \text{CFC-11}, \) and \(\text{CFC-12} \) (from Esler & Waugh 2002)
- Tracer 4: \(\text{N}_2\text{O}, \text{CH}_4, \text{OCS}, \) and \(\text{CFC-11} \) (from Jin et al., 2006)

Integrated loss between 380-550K

D. Griffin et al., in preparation.
Ozone Loss Derived from ACE-FTS

- Generally good agreement between methods
 - Average profile descent shows smaller losses and passive subtraction showing slightly larger losses

D. Griffin et al., in preparation.
ACE-FTS v3.5 Climatology

• Building on Jones et al., ACP (2011) and recent work done for SPARC Data Initiative
• Using quality filtered ACE-FTS v3.5 profiles from Feb. 2004 – Feb. 2013 (was 2004-2009)
• \(\text{O}_3, \text{H}_2\text{O}, \text{CH}_4, \text{N}_2\text{O}, \text{CO}, \text{NO}, \text{NO}_2, \text{N}_2\text{O}_5, \text{HNO}_3, \text{HCl}, \text{HF}, \text{ClO}_2, \text{O}_3\), and CFC-11 and CFC-12
 – Added \(\text{C}_2\text{H}_6, \text{C}_2\text{H}_2, \text{HCN}, \text{OCS, HCOOH, CH}_3\text{OH, H}_2\text{CO}\)
 – 45 levels up to 0.0001 hPa as data available (was 0.1 hPa)

J.-H. Koo et al., JQSRT (accepted July 2016).
Summary

- ACE Instruments and satellite are continuing to function nominally and produce excellent results
- Data being used for scientific and validation studies
 - Reprints available from http://www.ace.uwaterloo.ca
 - Climatological datasets and atlases available from website
 - Contact kaley.walker@utoronto.ca for data access!

Funding for ACE and this work provided by:
- Canadian Space Agency (CSA)
- Natural Sciences and Engineering Research Council of Canada
- Environment and Climate Change Canada