UNLOCKING THE PUZZLE OF TROPICAL OZONE CHANGES

Michaela I. Hegglin, University of Reading, UK
UNLOCKING THE PUZZLE OF TROPICAL OZONE CHANGES

Michaela I. Hegglin, University of Reading, UK

‘Tropical column ozone levels are almost unchanged since 1964-1980’
(WMO, 2014)
WOULD WE NOT HAVE EXPECTED TROPICAL OZONE TO DECLINE?

Randel & Wu, JGR 2007

• Indeed SAGE indicates decline in the stratosphere.
• This is not consistent with the total column observations…

Fahey & Hegglin, 20 QAs WMO 2011

• CCMVal models indicate a decline in the past as well, in line with the increase in ESC.
Reconciliation of halogen-induced ozone loss with the total-column ozone record

T. G. Shepherd¹*, D. A. Plummer², J. F. Scinocca², M. I. Hegglín¹, V. E. Fioletov³, M. C. Reader⁴, E. Remsberg⁵, T. von Clarmann⁶ and H. J. Wang⁷
METHODOLOGY - OBSERVATIONS

- Ground-based global long-term observations of total column ozone.
- Satellite limb observations of vertically resolved stratospheric ozone.
 - Newly generated and quality-controlled monthly zonal mean time series from the SPARC Data Initiative

Tegtmeier, Hegglin, et al., JGR 2013
SPARC Report No. 8, in print
METHODOLOGY – MODEL

- Canadian Middle Atmosphere Model (CMAM) nudged to meteorological reanalyses from 1960 to 2009 (using ERA40/ERA-I before/after 1979).
 - Chemistry evolves freely but is strongly slaved to the meteorology (as in a CTM).

- Two parallel CMAM simulations are performed that both include the known forcings from GHGs and air pollutants,
METHODOLOGY – MODEL

- Canadian Middle Atmosphere Model (CMAM) nudged to meteorological reanalyses from 1960 to 2009 (using ERA40/ERA-I before/after 1979).
 - Chemistry evolves freely but is strongly slaved to the meteorology (as in a CTM).

- Two parallel CMAM simulations are performed that both include the known forcings from GHGs and air pollutants, plus
 1. Evolving abundances of ozone-depleting substances (ODS)
 2. Fixed ODSs at 1960 levels (cODS run)
METHODOLOGY – MODEL

- Canadian Middle Atmosphere Model (CMAM) nudged to meteorological reanalyses from 1960 to 2009 (using ERA40/ERA-I before/after 1979).
 - Chemistry evolves freely but is strongly slaved to the meteorology (as in a CTM).

- Two parallel CMAM simulations are performed that both include the known forcings from GHGs and air pollutants, plus
 1. Evolving abundances of ozone-depleting substances (ODS)
 2. Fixed ODSs at 1960 levels (cODS run)

allows for removing dynamical variability and identification of ODS-induced ozone loss by simply using the difference between the two simulations.
TROPICS: TOTAL AND PARTIAL COLUMN

Shepherd et al. (2014); Chapter 2, WMO 2014

- Nudged CMAM agrees extremely well with total column.
TROPICS: TOTAL AND PARTIAL COLUMN

Shepherd et al. (2014); Chapter 2, WMO 2014

- Nudged CMAM agrees extremely well with total column.

- Nudged CMAM agrees well with stratospheric observations.
 - Shows that there is no inherent discrepancy between the total-column and stratospheric ozone records in the tropics.
TROPICS: TOTAL AND PARTIAL COLUMN

Shepherd et al. (2014); Chapter 2, WMO 2014

• Nudged CMAM agrees extremely well with total column.

• Nudged CMAM agrees well with stratospheric observations.
 • Shows that there is no inherent discrepancy between the total-column and stratospheric ozone records in the tropics.

• We can hence also trust the tropospheric column in CMAM and infer that strong increases in tropospheric ozone have masked stratospheric ozone loss.

IUGG General Assembly 2015 – A15
Using the difference between the two simulations, ODS-induced ozone loss can be quantified with high temporal resolution.
TROPICS: LOSS AND RECOVERY

• Using the difference between the two simulations, ODS-induced ozone loss can be quantified with high temporal resolution.
 • Closely follows ESC, with volcanic enhancement.
 • Recovery has started, with a decrease in ozone loss of somewhat more than 10% by 2006-2009.

Pre-1980s ozone loss is 40% of the non-volcanic max!
SUMMARY & OUTLOOK

• Our study reconciled an apparent discrepancy between limb and total column observations in the tropics.
 - The combined use of models and measurements was key to the interpretation of the observations.

• Changes in tropospheric ozone have partially masked stratospheric ozone decline in the tropics, in addition to that from CO$_2$-induced cooling.
 - Tropospheric ozone changes can be expected to potentially confound identification of ozone recovery.

• Pre-1980 ozone loss was 40% of the non-volcanic maximum.

• We identified and quantified tropical ozone recovery to be around 10% of the non-volcanic maximum by 2006-2009.
 - Both findings apply also to the SH and NH mid-latitudes (not shown).

• The findings imply that our understanding of future changes in the ozone layer will rely on a holistic one-atmosphere approach, the availability of vertically resolved ozone observations, and continued modeling efforts.
20 Q&As about the Ozone Layer

m.i.hegglin@reading.ac.uk
Nudged CMAM roughly follows ground-based observations from Dobson and Brewer instruments.

- Observed long-term annual-mean decrease of 10 DU (~3%) is clearly attributable to ODS
- ODS-induced decrease prior to 1980 is partially offset by the increase in tropospheric ozone
SOUTHERN HEMISPHERE MIDLATITUDES – TOTAL COLUMN

- Nudged CMAM follows observations
 - Observed long-term maximum non-volcanic decrease of 19 DU (6%) is clearly attributable to ODS
 - Dynamical variability induces dip in mid-1980s, masks Pinatubo-induced loss, and drives observed increase from late 1990s to mid 2000s
SOUTHERN HEMISPHERE MIDLATITUDES – PARTIAL COLUMN

- Decomposition into tropospheric (black) and stratospheric (gray) partial columns:
 - The stratospheric ozone in the nudged CMAM follows the observations extremely well
 - Very little tropospheric ozone increase in the SH
NORTHERN HEMISPHERE MIDLATITUDES – TOTAL COLUMN

- Nudged CMAM follows observations, except in mid-1970s, and with an offset after 1980
 - Observed long-term annual-mean decrease of 12 DU (3.5%) is attributable to ODS
 - Strong interannual variability evident in cODS run, including after El Chichon and Mt Pinatubo eruptions

![Graph showing 35°–60° N total-column O₃ with a correlation coefficient of r^2 = 0.67](image)
NORTHERN HEMISPHERE MIDLATITUDES – PARTIAL COLUMN

- Decomposition into tropospheric (black) and stratospheric (gray) partial columns:
 - Nudged CMAM agrees very well with observations of stratospheric ozone from limb sounders
 - Suggests offset in total column ozone due to a too large long-term increase in tropospheric ozone (cf. Young et al. 2013)