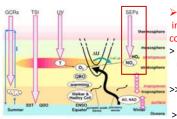


QOS2016-260

Four years measurements of the mesospheric nitric oxide (NO) and ozone with a ground-based millimeter-wave spectral radiometer at Syowa station, Antarctica


Tomoo Nagahama^{1)*}, Akira Mizuno¹⁾, Tac Nakajima¹⁾, Hirofumi Ohyama¹⁾, Yasusuke Kojima¹⁾, Mitsumu K. Ejiri²⁾, Yoshihiro Tomikawa²⁾, Masaki Tsutsumi²⁾, Takuji Nakamura²⁾

1)Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Japan

2) National Institute of Polar Research (NIPR), Japan

*Contact person: <u>nagahama@isee.nagoya-u.ac.jp</u> , Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

1. Composition changes in polar mesosphere caused by energetic particle precipitation (EPP)

➤ Precipitation of SEPs (Solar Energetic Particles) into the middle atmosphere induces chemical composition changes;

> N2 and O2 are dissociated and/or ionized, resulting production of N_2^+ , N^+ , O^+ , O_2^+ ,

>> leading to production of HO_x and NO_x

>>> may induce the O₃ depletion.

Fig.1) Mechanism of solar influence from Gray et al. 2010. (The figure is taken from SCOSTEP/VarSITI brochure 2013)

➤ EPP occurs in an area depending on their origin.

Origin: Energy: >MeV Precipitation:

relativistic electron auroral electron radiation belt

1-10 keV



Fig.2) SEPs and their properties. (based on Turunen et al. 2009)

Scientific questions:

► What kind of SEPs is the most influence to the middle atmosphere composition?

Do the composition changes affect to those in the lower altitude region? induce O₃ destruction?

Continuous measurements of composition changes are desirable to investigate these influences. Especially, nitric compounds (NO_v) are important because they directly produce via ion chemistry by SEPs (e.g. Turunen et al. 2009; Andersson et al. 2014).

2. Millimeter-wave measurements of ozone and nitric oxide (NO) at Syowa station, Antarctica

Fig.3) Millimeter-wave spectral

radiometer at Syowa station.

Fig.4) An example of the observed

NO spectrum over Syowa.

Syowa station (69.00° S, 39.85° E, Mlat=66° S)

Hardware specification Antenna: 12 cm parabolic mirror

Receiver: 4 K-cooled SIS mixer (Tsys ~ 300 K@250 GHz) Spectrometer: Agilent Digital FFT (B~1 GHz, ∆B~70 kHz)

Measurements

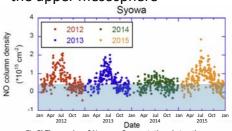
Period: January 2012 ~

Number of measurements: 807 days (2012-2015)

Targets: NO: 250.796 GHz

O₂: 239.093 GHz (8 times/day)

Data Acquisition: every 10 min.

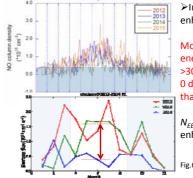

=> integrated every 3 hrs for NO integrated every 0.5 hrs for O₃

Estimation of the NO column amount in the upper mesosphere approximately from 75 to 105 km (N_{NO}) $N_{\text{NO}}(\text{cm}^{-2}) = \text{Integrated Intensity}(K \text{ MHz}) \times T(K) \times 3.9 \times 10^{13}$,

where we assume as T = 200 K (Isono et al. 2014a, b). $\rightarrow N_{NO}(1\sigma) \sim 0.2 * 10^{15} \text{ cm}^{-2}$

Andersson, M. E., et al. (2014), Nat. Commun., 5:5197, doi:10.1038/ncomms6197. Gray, L. J., et al. (2010), Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282. Isono Y., et al. (2014a), JGR -Space Physics, 119, 7745-776, doi:10.1002/2014JA019881. Isono Y., et al. (2014b), GRL, 41, 2568-2574, doi:10.1002/2014GL059360. Uemura, M., et al. (2015), presentation in JpGU2015. Turunen, E., et al. (2009), J. Atmos. Sol. Terr. Phys., 71, 1176-1189, doi:10.1016/j.jsatp.2008.07.005.

3. Temporal variations of the column amount of NO in the upper mesosphere



►N_{NO} clearly shows a seasonal variation except for 2014.

 $N_{NO} \sim 2.0 \times 10^{15} \text{ cm}^{-2} \text{ in winter}$ $\sim 0.6 \times 10^{15}$ cm⁻² in others

Photo-chemical processes are dominant in the mesospheric NO chemistry.

Fig.5) Time series of N_{NO} over Syowa station, Antarctica.

>In 2014 winter, there is not significant enhancement of N_{NO} .

Monthly accumulated number of precipitating energetic electron (N_{EE}) with an energy of >30 keV observed with the POSE/MEPED 0 deg. telescope in 2014 winter is by 1/5 less than those in 2012 and 2013.

 N_{EE} is a key parameter of the winter enhancement of N_{NO} .

Fig. 6) Seasonal variations of N_{NO} (upper) and N_{EE} (lower).

 \triangleright Short-term N_{NO} enhancements, suggesting the relation with events of SEPs (e.g. Isono et al. 2014a), appear in Fig.5.

A significant N_{NO} enhancement (anomaly > 3σ) is defined in 2014-2015 dataset as below, Δ N_{NO} = N_{NO} - $N_{NO}(30$ days ave. in 2012-2013)

3 events in 2015 is found (arrows in Fig.7), but are not correlated with the geomagnetic disturbance index (D_{st}).

The quantity of precipitating particles is much important to the N_{NO} enhancement

Fig.7) Seasonal variations of N_{NO} (upper) and time series of D_{st} (blue) and N_{NO} anomaly (red) in 2015 (lower).

4. Summary and next steps

The observed N_{NQ} shows a seasonal variation with a winter maxima except for in 2014. In case of 2014, N_{EE} with an energy of > 30 keV is by 1/5 less than those in 2012 and 2013, suggesting it is a key parameter of the seasonal variation of N_{NO} .

 \triangleright Short-term N_{NO} enhancements are derived from the 2014-2015 dataset, however, no significant correlation with D_{st} is found, implying the quantity of precipitating particles is important to the N_{NO} enhancement rather than geomagnetic environmental indices.

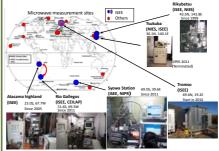


Fig.8) The ISEE millimeter-wave spectral radiometers

Extension of the millimeter-wave measurement sites to the Arctic region Remaining questions;

>Does N_{NO} enhancement appear in Arctic and Antarctic regions at an EPP

>Do the seasonal and long-term variations of N_{NO} show a similar pattern?

A new spectral radiometer is installed in Tromso, Norway, and will start simultaneous measurements in both the polar regions.