

Safeguards Requirements for the Disposal of High Active Waste in Germany in a Geological Repository

Safeguards

"Safeguards are a **set of technical measures** that are applied by the IAEA on **nuclear facilities and material**. Through these technical measures, the IAEA seeks to **independently verify** a State's legal obligation that nuclear **facilities are not misused** and **nuclear material is not diverted** from peaceful uses."

(emphasis added)

From: IAEA, Basics of IAEA Safeguards

https://www.iaea.org/topics/basics-of-iaea-safeguards,

By Rodolfo Quevenco/IAEA

https://www.flickr.com/photos/iaea_imagebank/4688155350/ published under CC BY-SA 2.0 Licence

Safety, Security & Safeguards in Final Disposal

1. German regulation

"The safety concept shall take into account measures [...] for nuclear material safeguards."

(own translation from EndlSiAnfV, § 10 par. 7 no. 2)

2. International safety standards

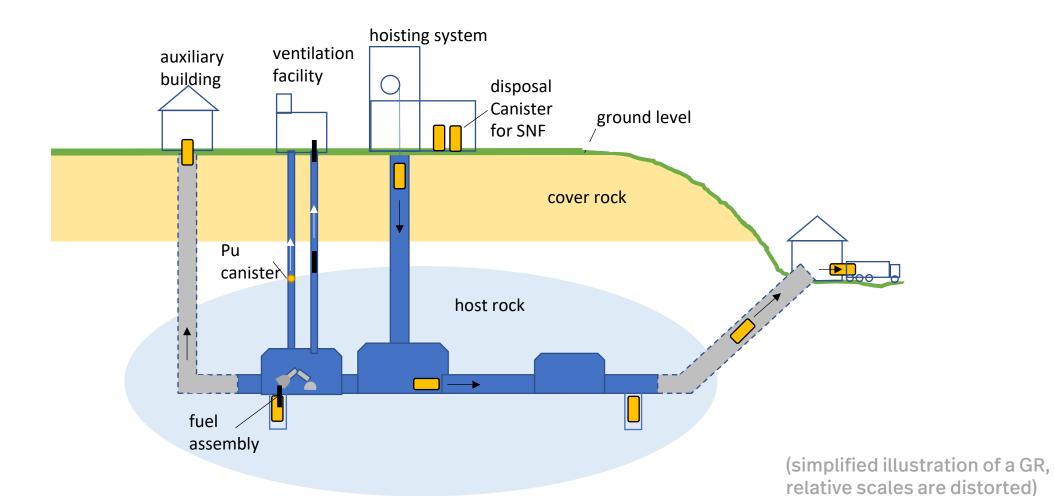
Placement in a geological disposal facility [...] would be consistent with the objective of IAEA nuclear safeguards.

"[...] Intrusive methods, which might compromise safety after closure, have to be avoided."

Clauses 5.15. & 5.18, IAEA SSR-5, Disposal of Radioactive Waste, Specific Safety Requirements

Geological Repository (GR) Safeguards

Proliferation-relevant features


- Strategic value of Pu (U-233, HEU) in Spent Nuclear Fuel (SNF)
- Diversion during and after operation ("Pu mine")

Safeguards-relevant features

- Indefinite emplacement in deep geological formation
- Extended life-cycle of the facility, i.e. from siting to post-closure
- Rock formation as containment
- Operation of underground mine, continuously evolving facility
- → Facility-specific concept for safeguards
- → Safeguards by Design for Facility & RWM Programme

Diversion Scenarios for a GR

Safeguards Approach for GR

1. Design Information Verification

- Verify "built-as-declared" on surface and underground
- Absence of extraction & processing of SNF above/below ground
- First declaration of baseline before excavation begins

2. Nuclear Material Accountancy

- Verification of SNF before encapsulation "best-available-method"
- No termination of safeguards

3. Continuity of Knowledge

 Verify that material flows into repository by monitoring all ways of access to repository (no verification underground)

4. Detection of Undeclared Activities

i.a., evaluate activities that might compromise integrity

Implementation Challenges

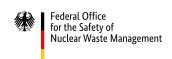
- DIV underground
- Continuous throughput
- Robust verification
- Operating environment
 - Radiation field
 - Security
 - Mining operations
- Exclude impact with long-term safety

Specific Aspects in Germany for the GR

Relevant Documents

- StandAG
- Safety Requirements (EndlSiAnfV, EndlSiUntV)
- National Programme (NaPro)

Specific aspects


- Site Selection
- Retrievability
- Recoverability
- Waste inventory

Result from SafeEnd

Structured requirements

- Traceability
- Adaptability
- Indicates relevant stakeholders and GR phase

Requirements for Geological Repository Safeguards				
No.	Requirement	PO	0	PC
DI.1	Design information will be provided during the pre-operational phase on the above-ground area and the geological repository	х		\int
DI.2	Information about the original undisturbed site is to be established with the Agency			
DI.3	DIV measures will be performed during the pre-operational and phase	х	Х	
DI.4	DIV is used to verify the absence of capability to remove spent fuel assemblies from a canister	х	Х	$\overline{/}$

Selected Key Findings

1. Site Selection & Exploration

- DIV of underground facility to be conducted prior to operation
- → Early declaration required; current practice is DIV during excavation
- → Alternative approaches required/possible?

2. Retrievability

- Safety Regulation requires technical readiness; reasonable response times
- Cask retrieval is baseline diversion scenario
- → Diversion scenario already considered in SG approach

3. Waste Inventory

- Variety of fuel types + emplacement of non-safeguarded HAW
- Potentially nuclear material emplaced in co-located repository for LAW & MAW
- → Monitoring technically challenging

Conclusion & Outlook

Consider evolution of repository design & disposal concept in "Safeguards-by-design"

Research study on Safety & Safeguards

(Call for tender under preparation)

→ Methodological approach for a systematic safety assessment of safeguards methods based on the safety case

Thank you.

Dr. Martin Dürr Scientific Officer Safeguards / Non-Proliferation

Division F4 Research on Safety Analysis and Methodology Federal Office for the Safety of Nuclear Waste Management